14.3/4 Tangent Slopes and Tangent Planes

Some Notation and Review 1st Partials ∂z ∂x $=f_x(x, y) =$ "slope in x – direction" ∂z ∂y $=f_x(x, y) = "slope in y-direction"$

2nd Partial Derivatives

Concavity in *x*-direction:

$$
\frac{\partial^2 z}{\partial x^2} = \frac{\partial}{\partial x} \left(\frac{\partial z}{\partial x} \right) = f_{xx}(x, y)
$$

Concavity in *y*-direction:

$$
\frac{\partial^2 z}{\partial y^2} = \frac{\partial}{\partial y} \left(\frac{\partial z}{\partial y} \right) = f_{yy}(x, y)
$$

Mixed Partials:

$$
\frac{\partial^2 z}{\partial y \partial x} = \frac{\partial}{\partial y} \left(\frac{\partial z}{\partial x} \right) = f_{xy}(x, y)
$$

$$
\frac{\partial^2 z}{\partial x \partial y} = \frac{\partial}{\partial x} \left(\frac{\partial z}{\partial y} \right) = f_{yx}(x, y)
$$

Entry Task: Find all 1^{st} and 2^{nd} partials for $z = f(x, y) = x^2 - y^2$ ිට $\bigg($ λχ $\frac{\partial z}{\partial x} = 2x$ $\begin{array}{ccc} \searrow & & \circ \searrow \\ \searrow & & \searrow \end{array}$ F_{xx} = 2 F_{xy} = 0 F_{yx} = 0 F_{yy} = 2
concave concave mese are
alwaystne E_x) $\frac{1}{2}$ always the down

same

Clairaut's theorem: The mixed 2nd partials are continuous, then they are equal.

A few random HW Notes: From 14.3(1)

$35 - 52$ $\frac{5}{9} - \frac{1}{9}$ 5. + Question Details $t_{x} = 99$ Find the first partial derivatives of the function. $f(x, y) = x^{5y}$ $F_y = \chi^{99} \ln(x) \cdot 5$ $f_{x}(x, y) =$ $f_{V}(x, y) =$

From 14.3(2):

+ Question Details

Find the first partial derivatives of the function. $f(x, y, z) = 5x \sin(y - z)$ $f_{x}(x, y, z) = 5\sin (y - z)$ $f_v(x, y, z) =$ $f_{7}(x, y, z) =$

$9.$ + Question Details

 14

Find the indicated partial derivative.

$$
f(x, y, z) = e^{xyz^{4}}; \quad f_{xyz}
$$

$$
f_{xyz}(x, y, z) =
$$

Question Details SCalcET8 14.3.098. [3800345] The paraboloid $z = 8 - x - x^2 - 4y^2$ intersects the plane $x = 1$ in a parabola. Find parametric equations in terms of t for the tangent line to this parabola at the point $(1, 2, -10)$. (Enter your answer as a comma-separated list of equations. Let x, y, and z be in terms of t .)

Hint: See page 7 of these notes for how to get the direction vector in problem 14!!!

14.4 Tangent Planes -> 3D Tangent for a

The plane that contains all tangent lines to a surface at a point is given by

 $z - z_0 = f_x(x_0, y_0)(x - x_0) + f_y(x_0, y_0)(y - y_0)$

$$
-f_x(x_0, y_0)(x - x_0) - f_y(x_0, y_0)(y - y_0) + (z - z_0) = 0
$$

which we typically write as:

Infinatley many Find ² tangent lines and find cross product to get normal for plane formula

Example: Find the tangent plane to *z* = $f(x, y) = 15 - x^2 - y^2$ at (7,4)

Derivation of Tangent Plane

General Derivation

In general, for $z = f(x,y)$ at (x_0, y_0) by:

1. $z_0 = f(x_0, y_0) =$ height.

- 2. $\langle 1,0, f_x(x_0,y_0) \rangle =$ 'a tangent in *x*-dir.' (direction vector for tangent line!) $(0,1, f_v(x₀, y₀)) = 'a tangent in y-dir.'$
- 3. Normal to surface: $\langle 1,0, f_x(x_0,y_0)\rangle \times \langle 0,1, f_y(x_0,y_0)\rangle$ $\phi = \langle -f_x(x_0, y_0), -f_y(x_0, y_0), 1 \rangle \implies$ don't worry about vu

Tangent Plane:

$$
-f_x(x_0, y_0)(x - x_0) - f_y(x_0, y_0)(y - y_0) + (z - z_0) = 0
$$

which we typically write as:

$$
z - z_0 = f_x(x_0, y_0)(x - x_0) + f_y(x_0, y_0)(y - y_0)
$$

An Application of the Tangent Planes

Linear Approximation

"Near" the point (x_0, y_0) the tangent plane and surface z-values are close.

$$
z - z_0 = f_x(x_0, y_0)(x - x_0) + f_y(x_0, y_0)(y - y_0),
$$

which is the same as

 $L(x, y) = z = z_0 + f_x(x_0, y_0)(x - x_0) + f_y(x_0, y_0)(y - y_0)$

Idea:

 $f(x, y) \approx L(x, y)$ for $(x, y) \approx (x_0, y_0)$

$F'18 - Exam2 - Loveless$

Find both 1st partial derivatives of

 $f(x, y) = x^5 \sin\left(\frac{\pi x}{y^2}\right) + \ln(y) + 4$

and give the tangent plane at (1,1).

$$
\frac{d\overline{z}}{dx} = x^5 \cos\left(\frac{\pi x}{y^2}\right) \frac{\pi}{y^2} + 5x^4 \sin\left(\frac{\pi x}{y^2}\right)
$$

$$
\frac{d^2}{dx}\Big|_{(1,1)} = \cos(\pi) \pi + 5\sin(\pi) = \boxed{\pi}
$$

$$
\frac{dz}{dy} = x^{5}cos(\frac{\pi x}{y^{2}})(\frac{2\pi x}{y^{3}}) + \frac{1}{y}
$$

$$
\frac{dz}{dy}|_{(y_{1})} = cos(\pi)(-2\pi) + 1 = \boxed{2\pi + 1}
$$

$$
\frac{z - 4}{z - \pi(x_{-1}) + (2\pi + 1)(y - 1)}
$$

 $z = P(1,1) = 4$

Use this linear approximation to estimate the value of f(0.95, 1.1).

Sp'17 – Exam 2 – Loveless Find $\frac{\partial z}{\partial x}$ and $\frac{\partial z}{\partial y}$ at the point (2,1,0) for the surface implicitly defined by $e^{3z} = x^2z + \ln(y) + 5x - 10.$

And give the tangent plane at this point.

Now, consider the curve of intersection of this surface with the fixed plane $y = 1$, find equations for the tangent line to this curve at (2,1,0).

Sp'18 – Exam 2 Find all 1^{st} and 2^{nd} partials for $f(x, y) = x^3 - x^2y + y^2 - 2y.$ *Preview of 14.7*: Can you find all (x,y) when BOTH 1st partials equal zero?